web Search

Google
 

Sunday, March 11, 2018

Explanation of Biology Phrases


1: Okazaki Fragments.                                                              
2: Priming.                                                           
3: Origin of Replication in E. coli.                                                        
5: Topoisomerase II Mechanism.                                                         
6: Structure of Topoisomerase II.                                                         
7: Topoisomerase I Mechanism.                                                          
8: Structure of a Topoisomerase.                                                         
9: Topoisomers.                                                             
10: Linking Number.                                                             
11: DNA Polymerases Require a Template and a Primer                                
12: Conserved Residues among Helicases.                                                
13: Helicase Mechanism.                                                             
14: Helicase Structure.                                                             
15: Proofreading.                                                           
16: Shape Selectivity.                                                             
17: Minor-Groove Interactions.                                                         
18: DNA Polymerase Mechanism.                                                        
19: DNA Polymerase Structure.                                                         
20: DNA Can Assume a Variety of Structural Forms                                    
21: Comparison of A-, B-, and Z-DNA                                                   
22: Z-DNA.                                                          
23: Propeller Twist.                                                             
24: Major and Minor Grooves in B-Form DNA.                                          
25: Major- and Minor-Groove Sides.                                                     
26: Steric Clash.                                                          
27: Sugar Puckers.                                                            
28: B-Form and A-Form DNA.                                                         
30: DNA Replication At Low Resolution.                                                
31: Consequences of Strand Separation.                                                  
32: DNA Replication.                                                            
33: DNA Replication, Recombination, and Repair                                       
34: Problems                                                         
35: Summary                                                        
36: Mutations Involve Changes in the Base Sequence of DNA                        
37: Ames Test.                                                         
38: Triplet Repeat Expansion.                                                           
39: Mismatch Repair.                                                             
40: Uracil Repair.                                                            
41: Excision Repair.                                                             
42: Structure of DNA-Repair Enzyme.                                                   
43: Repair Pathways.                                                             
44: Cross-Linked Dimer of Two Thymine Bases.                                         
45: Aflatoxin Reaction.                                                            
46: Acridines.                                                       
47: Chemical Mutagenesis.                                                            
48: Base Pair with 5-Bromouracil.                                                        
49: Base Pair with Mutagenic Tautomer.                                                  


51: Recombinases and Topoisomerase I.                                                  
52: Recombination Mechanism.                                                         
53: Holliday Junction.                                                             
54: Recombination.                                                            
56: Telomere Formation.                                                             
57: Proposed Model for Telomeres.                                                      
58:Eukaryotic Cell Cycle.                                                             
59: Coordination between the Leading and the Lagging Strands.                    
60: Replication Fork.                                                             
61: Structure of the Sliding Clamp.                                                      
62: Proposed Architecture of DNA Polymerase III Holoenzyme.                    
63: DNA Ligase Mechanism.                                                           
64: DNA Ligase Reaction.                                                            
65: Diversity Is Generated by Gene Rearrangements                                    
66: Class Switching.                                                             
67: B-Cell Activation.                                                             
68: B-Cell Receptor.                                                             
69: V( D ) J Recombination.                                                           
70: Light-Chain Expression.                                                           
71: VJ Recombination.                                                             
72: The Kappa Light-Chain Locus.                                                       
74: Antibody - Protein Interactions.                                                      
75: Antibodies Against Lysozyme.                                                       
76: Binding of a Small Antigen.                                                         
77: Variable Domains.                                                             
79: Immunoglobulin Fold.                                                            
81: Variable and Constant Regions.                                                      
82: Immunoglobulin Sequence Diversity.                                                 
83: Properties of immunoglobulin classes                                                  
84: Classes of Immuno-Globulin.                                                        
85: Segmental Flexibility.                                                             
86: Antigen Cross-Linking.                                                            
87: Immunoglobulin G Cleavage.                                                        
88: Immunoglobulin G Structure.                                                        
90: Immunoglobulin Production.                                                        
91: The Immune System                                                                       
92: Problems                                                                                         
93: Summary                                                                                         
94: Immune Responses Against Self-Antigens Are Suppressed               
95: Consequences of Autoimmunity.                                                   
96: T-Cell Selection.                                                                             
97: Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors                                                                                               
98: HIV Receptor.                                                                                
99: Human Immunodeficiency Virus.                                                  
100: Polymorphism in Class I MHC Protein.           


101: Helper T Cell Action.                                                                    
102: Variations on a Theme.                                                                  
103: Coreceptor CD4.                                                                           
104: Class II MHC Protein.                                                                  
105: Presentation of Peptides from Internalized Proteins.                      
106: Consequences of Cytotoxic-T-Cell Action.                                  
107: T-Cell Activation.                                                                          
108: T-Cell Receptor Complex.                                                             
109: The Coreceptor CD8.                                                                    
110: T-Cell Receptor Class I MHC Complex.                                      
111: T-Cell Receptor.                                                                            
112: Anchor Residues.                                                                          
113: Class I MHC Peptide-Binding Site.                                              
114: Class I MHC Protein.                                                                    
115: Presentation of Peptides from Cytosolic Proteins.                         
              
119: Transcription Initiation.                                                                 
120: CAAT Box and GC Box.                                                             
121: TATA Box.                                                                                   
122: RNA Polymerase Poison.                                                              
123: Eukaryotic RNA polymerases                                                       
124: Transcription and Translation.                                                       
125: Transcription Is Catalyzed by RNA Polymerase                           
126: Antibiotic Action.                                                                         
127: Primary Transcript.                                                                        
129: Effect of Rho Protein On the Size of RNA Transcripts.                  
130: Termination Signal.                                                                       
131: RNA-DNA Hybrid Separation.                                                    
132: Transcription Bubble.                                                                    
133: DNA Unwinding.                                                                         
134: Alternative Promoter Sequences.                                                  
135: Structure of the Sigma Subunit.                                                    
136: Prokaryotic Promoter Sequences.                                                  
137: Footprinting.                                                                                  
138: RNA Polymerase Active Site.                                                       
139: Subunits of RNA polymerase from E. coli                                   
141: RNA Polymerase Structures.                                                        
142: An Overview of RNA Synthesis                                                  
143: RNA Synthesis and Splicing                                                         
144: Problems                                                                                        
145: Summary                                                                                       
146: Comparison of Splicing Pathways.                                               
147: Self-Splicing Mechanism.                                                              
148: Structure of a Self-Splicing Intron.                                               


151: Selected proteins exhibiting alternative RNA splicing                    
152: Alternative Splicing Patterns.                                                        
153: Splicing Catalytic Center.                                                             
154: Spliceosome Assembly.                                                                 
156: Splicing Branch Point.                                                                   
157: Splicing Mechanism Used for mRNA Precursors.                         
158: Splicing Defects.                                                                           
159: Splice Sites.                                                                                   
160: RNA Editing.                                                                                
161: Polyadenylation of a Primary Transcript.                                      
162: Capping the 5 End.                                                                       
163: Transfer RNA Precursor Processing.                                             
165: Transcription-Factor-Binding Sites.                                              
166: Assembly of the Initiation Complex.                                            
168: An Experimental Demonstration of Enhancer Function.                  
169: Enhancer Binding Sites.                                                                
170: Gal4 Binding Sites.                                                                       
171: Higher-Order Chromatin Structure.                                              
172: Homologous Histones.                                                                  
173: Nucleosome Core Particle.                                                            
174: Chromatin Structure.                                                                     
175: Yeast Chromosomes.                                                                     
177: DNA Recognition Through Beta Strands.                                    
178: Helix-Turn-Helix Motif.                                                                
179: Structure of a Dimer of CAP Bound to DNA.                             
180: Binding Site for Catabolite Activator Protein (CAP).                     
181: Binding-Site Distributions.                                                           
182: Induction of the LAC Operon.                                                      
183: Effects of IPTG On LAC Repressor Structure.                            
184: LAC Repressor-DNA Interactions.                                               
185: Structure of the LAC Repressor.                                                   
186: The LAC Operator.                                                                        
187: Operons.                                                                                        
188: Beta-Galactosidase Induction.                                                      
189: Following the Beta-Galactosidase Reaction.                                
190: Programming Gene Expression.                                                    
192: The Control of Gene Expression                                                   
193: Chapter Integration Problem                                                         
194: Problems                                                                                        
195: Summary                                                                                       
197: The IRE-BP Is an Aconitase.                                                        
198: Transferrin-receptor mRNA.                                                         
199: Iron-Response Element.                                                                
200: Structure of Ferritin.            


201: Leader Peptide Sequences.                                                           
202: Attenuation.                                                                                  
203: Leader Region of TRP mRNA.                                                    
205: Interaction between CBP and CREB.                                          
206: Domain Structure of CREB-Binding Protein (CBP).                     
207: Cyclic AMP-Response Element Binding Protein (CREB).               
208: Chromatin Remodeling.                                                                
209: Structure of a Bromodomain.                                                        
210: Structure of Histone Acetyltransferase.                                        
211: Estrogen Receptor-Tamoxifen Complex.                                      
212: Coactivator Recruitment.                                                              
213: Coactivator-Nuclear Hormone Receptor Interactions.                     
214: Coactivator Structure.                                                                   
215: Ligand Binding to Nuclear Hormone Receptor.                           
216: Structure of Two Nuclear Hormone Receptor Domains.                  
218: The Rod Cell.                                                                                
219: The Electromagnetic Spectrum.                                                    
224: Evidence that T2R Proteins Are Bitter Taste Receptors.                  
225: Conserved and Variant Regions in Bitter Receptors.                      
226: Expression of Gustducin in the Tongue.                                       
227: A Taste Bud.                                                                                 
228: Examples of Tastant Molecules.                                                    
230: Brain Response to Odorants.                                                        
231: The Cyranose 320.                                                                         
232: Converging Olfactory Neurons.                                                    
233: Patterns of Olfactory Receptor Activation.                                  
235: The Olfactory Signal-Transduction Cascade.                               
236: Conserved and Variant Regions in Odorant Receptors.                  
237: Evolution of Odorant Receptors.                                                  
238: The Main Nasal Epithelium.                                                          
239: Color Perception.                                                                           
240: Sensory Connections to the Brain.                                                
241: Sensory Systems                                                                            
242: Problems                                                                                        
243: Summary                                                                                       
245: Magnetotactic Bacterium.                                                             









251: Electron Micrograph of Tip Links.                                                
252: Micromanipulation of a Hair Cell.                                                 
253: An Electron Micrograph of a Hair Bundle.                                   
254: Hair Cells, the Sensory Neurons Crucial for Hearing.                     
255: Photoreceptor Molecules in the Eye Detect Visible Light                
256: Recombination Pathways Leading to Color Blindness.                   
257: Evolutionary Relationships among Visual Pigments.                      
259: Cone-Pigment Absorption Spectra.                                               
260: Visual Signal Transduction.                                                          
261: Analogous 7TM Receptors.                                                           
262: Atomic Motion in Retinal.                                                            
263: Retinal-Lysine Linkage.                                                                
264: Rhodopsin Absorption Spectrum.                                                 
265: Protein Synthesis                                                                           
266: Ribosomal Protein Structure.                                                        
267: Ribosomal RNA Folding Pattern.                                                 
268: The Ribosome at High Resolution.                                               
269: Ribosomes at Low Resolution.                                                     
271: Classes of Aminoacyl-tRNA Synthetases.                                    
273: Microhelix Recognized by Alanyl-tRNA Synthetase.                     
274: Glutaminyl-tRNA Synthetase Complex.                                      
275: Threonyl-tRNA Synthetase Complex.                                          
276: Editing of Aminoacyl-tRNA.                                                       
277: Editing Site.                                                                                  
278: Structure of Threonyl-tRNA Synthetase.                                     
279: Aminoacyl-tRNA.                                                                         
281: Helix Stacking in tRNA.                                                               
282: L-Shaped tRNA Structure.                                                           
283: General Structure of tRNA Molecules.                                         
284: Alanine-tRNA Sequence.                                                              
285: Accuracy of protein synthesis                                                       
286: Polypeptide-Chain Growth.                                                          
287: Protein Assembly.                                                                         
288: Ribosome Structure.                                                                      
289: Problems                                                                                        
290: Summary                                                                                       
292: Blocking of Translocation by Diphtheria Toxin.                           
293: Antibiotic Action of Puromycin.                                                   
294: Antibiotic inhibitors of protein synthesis                                      
295: Eukaryotic Translation Initiation.                                                  
296: Protein Factors Play Key Roles in Protein Synthesis                      
297: Structure of Ribosome Release Factor (RRF).                              
298: Structure of a Release Factor.                                                       
300: Molecular Mimicry   
                                                       

301: Structure of Elongation Factor Tu.                                               
302: Translation Initiation in Prokaryotes.                                            
305: A Role for Formylation.                                                                
306: Peptide-Bond Formation.                                                              
307: Mechanism of Protein Synthesis.                                                  
308: Polypeptide Escape Path.                                                              
309: Transfer RNA-Binding Sites.                                                        
310: Formylation of Methionyl-tRNA.                                                 
311: Initiation Sites.                                                                              
312: Polysomes.                                                                                     

313: Thick Filament.                                                                              
314: Myosin Motion Along Actin.                                                        
315: Watching a Single Motor Protein in Action.                                 
316: Actin and Hexokinase.                                                                  
317: Actin Structure.                                                                             
318: Sliding-Filament Model.                                                               
319: Sarcomere.                                                                                     
321: Effect of nucleotide binding on protein affinity                           
322: Neck Linker.                                                                                  
323: Relay Helix.                                                                                   
324: Lever-Arm Motion.                                                                       
325: Dynein Head-Domain Model.                                                       
326: Structure of Head Domain of Kinesin at High Resolution.               
327: Kinesin at Low Resolution.                                                           
328: Myosin Two-Stranded Coiled Coil.                                              
329: Myosin Light Chains.                                                                    
330: Myosin Structure at High Resolution.                                           
331: Myosin Dissection.                                                                        
332: Myosin Structure at Low Resolution.                                           
334: Motion Within Cells.                                                                     
335: Molecular Motors                                                                          
336: Problems                                                                                        
337: Summary                                                                                       
338: A Rotary Motor Drives Bacterial Motion                                     
339: Chemotaxis Signaling Pathway.                                                    
340: Changing Direction.                                                                      
341: Charting a Course.                                                                         
342: Proton Transport-Coupled Rotation of the Flagellum.                    
343: Flagellar Motor Components.                                                        
344: Flagellar Motor.                                                                             
345: Structure of Flagellin.                                                                    
346: Bacterial Flagella.                                                                          
347: Kinesin and Dynein Move Along Microtubules                            
348: Motion in Ncd.                                                                              
349: Structure of Ncd.                                                                          


351: Monitoring Movements Mediated by Kinesin.                             
352: Tubulin.                                                                                         
353: Microtubule Arrangement.                                                            
354: Microtubule Structure.                                                                  
355: Myosins Move Along Actin Filaments                                         
356: Myosin Lever Arm Length.                                            
357: The Biosynthesis of Membrane Lipids and Steroids                       
358: Site of Cholesterol Synthesis.                                                       
359: Properties of plasma lipoproteins                                                  
360: HMG-CoA Reductase.                                                                 
362: Cholesterol Formation.                                                                  
363: Oxidosqualene Cyclase.                                                                
364: Squalene Cyclization.                                                                    
365: Squalene Synthesis.                                                                       
366: Condensation Mechanism in Cholesterol Synthesis.                       
367: Synthesis of Isopentenyl Pyrophosphate.                                     
368: Fates of 3-Hydroxy-3-Methylglutaryl CoA.                                 
369: Labeling of Cholesterol.                                                                
371: Lysosome with Lipids.                                                                  
372: Ganglioside G M1.                                                                        
373: Synthesis of Sphingolipids.                                                           
374: Synthesis of an Ether Phospholipid.                                             
375: Structure of CDP-Diacylglycerol.                                                 
377: Problems                                                                                        
378: Summary                                                                                       
380: Three Isoprenoids from Familiar Sources.                                     
381: Vitamin D Synthesis.                                                                    
384: Cytochrome P450 Mechanism.                                                     
385: Cholesterol Carbon Numbering.                                                    
387: Synthesis of Bile Salts.                                                                  
390: An Atherosclerotic Plaque.                                                           
391: Structure of Propeller Domain.                                                     
392: Structure of Cysteine-Rich Domain.                                             
393: LDL Receptor Domains.                                             
394: Endocytosis of LDL Bound to Its Receptor.                               
395: Schematic Model of Low-Density Lipoprotein.                           
396: Biochemistry and Human Biology                                                
397: Prelude: Biochemistry and the Genomic Revolution                      
398: Chemical Bonds in Biochemistry                                                  
399: Biochemical Unity Underlies Biological Diversity                         



401: Fischer Projections                                                                        
402: Appendix: Depicting Molecular Structures                                   
404: The Integration of Metabolism                                                      
405: Fuel sources for muscle contraction                                              
406: Interplay of metabolic pathways for energy production.                  
407: Electron Micrograph of Mitochondria.                                         
408: Covalent Modifications.                                                                
409: Compartmentation of the Major Pathways of Metabolism.               
410: Regulation of Glycolysis.                                                              
411: Regulation of the Pentose Phosphate Pathway.                            
412: Regulation of Gluconeogenesis.                                                    
413: Glycogen Granules.                                                                       
414: Regulation of Fatty Acid Synthesis.                                             
415: Control of Fatty Acid Degradation.                                             
416: Metabolic Fates of Glucose 6-Phosphate.                                     
418: Metabolism Consist of Highly Interconnected Pathways                 
419: Fuel reserves in a typical 70-kg man                                             
420: Metabolic Interchanges between Muscle and Liver.                       
422: Electron Micrograph of Liver Cells.                                              
423: Insulin Secretion.                                                                           
424: Each Organ Has a Unique Metabolic Profile                                
425: Fuel Choice During Starvation.                                                     
426: Synthesis of Ketone Bodies by the Liver.                                    
427: Fuel metabolism in starvation                                                        
428: Entry of Ketone Bodies Into the Citric Acid Cycle.                      
429: Food Intake and Starvation Induce Metabolic Changes                  
432: Ethanol Alters Energy Metabolism in the Liver                            
433: Summary                                                                                       
434: Problems                                                                                        
435: NAD, FAD, and Coenzyme A Are Formed from ATP                   
436: de Novo Pathway for Pyrimidine Nucleotide Synthesis.                 
437: Structure of Carbamoyl Phosphate Synthetase.                            
438: Ammonia-Generation Site.                                                            
439: Substrate Channeling.                                                                   
441: de Novo Pathway for Purine Nucleotide Synthesis.                       
442: de Novo Purine Biosynthesis.                                                       
443: Inosinate Formation.                                              
444: Generating AMP and GMP.                                                         
446: Ribonucleotide Reductase R1 Subunit.                                        
447: Ribonucleotide Reductase R2 Subunit.                                        
448: Ribonucleotide Reductase Mechanism.                                        
449: Thymidylate Synthesis.                                                                 
450: Anticancer Drug Targets.       


451: Suicide Inhibition.                                                                         
453: Control of Purine Biosynthesis.                                                    
455: Purine Catabolism.                                                                        
456: Urate Crystals.                                                                               
458: Summary                                                                                       
459: Problems                                                                                        
460: Nucleotide Biosynthesis                                                                

Frontmatter, appendices, and other book material:
461: Biochemistry                                                                                 
462: Appendix C: Standard Bond Lengths                                          
463: Standard Bond Lengths                                                                
464: Appendix B: Acidity Constants                                                    
465: Typical pKa values of ionizable groups in proteins                         
466: pKa Values of Some Acids                                                           
467: Appendix A: Physical Constants and Conversion of Units               
468: Standard prefixes                                                                          
469: Conversion factors                                                                        
470: Mathematical constants                                                                 
471: Values of physical constants                                                         
472: Responding to Environmental Changes                                        
473: Synthesizing the Molecules of Life                                               
474: The Unity of Biochemistry Allows Human Biology to Be Effectively Probed Through Studies of Other Organisms                                                                                                     
475: Biochemical Evolution                                                                  
476: Cells Can Respond to Changes in Their Environments                    
478: Exploring Proteins                                                                         
479: Summary                                                                                       
481: Zonal Centrifugation.                                                                    
482: Protein Structure and Function                                                     
483: Summary                                                                                       
485: Proteins Are Built from a Repertoire of 20 Amino Acids                 
486: Oxidative Phosphorylation                                                            
487: ATP yield from the complete oxidation of glucose                        
489: Exploring Evolution                                                                      
491: The Calvin Cycle and the Pentose Phosphate Pathway                   
492: Calvin Cycle.                                                                                 
493: Isozymes of Lactate Dehydrogenase.                                           
494: Ultracentrifugation Studies of ATCase.                                       
495: Metabolism: Basic Concepts and Design                                      


Biology Textbook online


Biochemistry -- (Chapters and Vocabulary) -- A Super Textbook Online

DNA Replication, Recombination, and Repair (unit 1-64)
            
The Immune System (unit 65-116)
              

Sensory Systems
 (unit 217-264)

Protein Synthesis
 (unit 265-312)

Molecular Motors (unit 313-356)

Nucleotide Biosynthesis
 (unit 435-460)
              
Biochemical Evolution (unit 474-477)

Exploring Proteins (unit 478-481)

Oxidative Phosphorylation (unit 486-488)                                                        

Exploring Evolution
 (unit 489-490)                                                                   

Glycolysis and Gluconeogenesis
 (unit 497)                                      

Exploring Genes
 (unit 498)                                                                         

Sunday, September 18, 2016

DNA microarray method

1)            Set-up the following Pre-Hybridisation solution in a Coplin Jar and        incubate at65°C during the labeling incubation period to equilibrate. 20X SSC 8.75 ml 20% SDS 0.25 ml BSA (100 mg/ml) 5.0 ml H2O to 50.0 ml

2)            Label control and test genomic DNA as follows:- CONTROL TEST Genomic DNA ˜ 2 mg ˜ 2 mg Random Hexamers (3 mg/ml) 1 ml 1 ml H2O to 41.5 ml to 41.5 ml Heat at 95ºC for 5 minutes. Snap cool on ice and briefly centrifuge. 10X buffer 5 ml 5 ml dNTP's (5mM each dATP, dGTP & dTTP, 2mM dCTP) 1 ml 1 ml Cy-labelled dCTP 1.5 ml (Cy3) 1.5 ml (Cy5) Klenow fragment (10U/ml) 1 ml 1 ml Incubate at 37°C for 90 minutes.

3)          Incubate the microarray slide(s) in the Pre-Hybridisation solution for 20 minutes at65°C, beginning just before the end of the labelling reactions incubation time at37°C.

4)          Combine the control and test reactions and purify using the Qiagen MinElute PCR Purification kit, using a two step wash stage using 500 ml then 250 ml volumes of Buffer PE and eluting the labeled cDNA from the MinElute column with 14 ml H2O. The columns retain approximately 1 ml, so the final eluted volume will be 13 ml.

5)           Rinse the pre-hybridised microarray slides in H2O for 1 minute, then in isopropanol for 1 minute. Spin at 1500 rpm for 5 minutes to dry slides. Keep in covered slide box. 1 NICK DORRELL - LAST UPDATE FEBRUARY 2004

6)          Prepare the Hybridisation solution as follows: - Sample 13 ml H2O 26 ml 20X SSC 12 ml 2% SDS 9 ml Heat at 95ºC for 2 minutes. Allow to cool slowly at room temperature and centrifuge for 30 seconds. Add 2 x 20 ml H2O to the corners of the hybridisation chamber. Place a slide into the chamber. Place a LifterSlip™ glass coverslip (22 mm x 25 mm) over the array section on the slide using tweezers. Pipette the Hybridisation solution onto the slide at the top of the coverslip. Seal the chamber and incubate in a water bath at 65°C overnight.

7)         Prepare Wash solutions as follows: - Wash A (1X SSC 0.5% SDS) Wash B (0.06X SSC) 20X SSC 20 ml 2.4 ml 20% SDS 1 ml H2O to 400 ml to 800 ml Incubate Wash A solution at 65ºC overnight. Dispense 400 ml volumes into three glass slide washing dishes. Remove slide(s) from the hybridisation chambers and gently remove coverslip(s) by rinsing in Wash A. Place slide(s) in a slide rack and rinse with agitation for 5 minutes. Transfer slide(s) to a clean slide rack and rinse with agitation in Wash B(i) for 2 minutes, then in Wash B (ii) for a further 2 minutes. Spin at 1500 rpm for 5 minutes to dry slide(s).

8)      Scan slide(s) using Affymetrix 418 scanner and analyse data


NICK DORRELL - LAST UPDATE FEBRUARY 2004

Thursday, June 30, 2011

Cloning Fact Sheet: questions and answers (2)

What animals have been cloned?

Scientists have been cloning animals for many years. In 1952, the first animal, a tadpole, was cloned. Before the creation of Dolly, the first mammal cloned from the cell of an adult animal, clones were created from embryonic cells. Since Dolly, researchers have cloned a number of large and small animals including sheep, goats, cows, mice, pigs, cats, rabbits, and a gaur. All these clones were created using nuclear transfer technology.

Hundreds of cloned animals exist today, but the number of different species is limited. Attempts at cloning certain species have been unsuccessful. Some species may be more resistant to somatic cell nuclear transfer than others. The process of stripping the nucleus from an egg cell and replacing it with the nucleus of a donor cell is a traumatic one, and improvements in cloning technologies may be needed before many species can be cloned successfully.


Can organs be cloned for use in transplants?

Scientists hope that one day therapeutic cloning can be used to generate tissues and organs for transplants. To do this, DNA would be extracted from the person in need of a transplant and inserted into an enucleated egg. After the egg containing the patient's DNA starts to divide, embryonic stem cells that can be transformed into any type of tissue would be harvested. The stem cells would be used to generate an organ or tissue that is a genetic match to the recipient. In theory, the cloned organ could then be transplanted into the patient without the risk of tissue rejection. If organs could be generated from cloned human embryos, the need for organ donation could be significantly reduced.

Many challenges must be overcome before "cloned organ" transplants become reality. More effective technologies for creating human embryos, harvesting stem cells, and producing organs from stem cells would have to be developed. In 2001, scientists with the biotechnology company Advanced Cell Technology (ACT) reported that they had cloned the first human embryos; however, the only embryo to survive the cloning process stopped developing after dividing into six cells. In February 2002, scientists with the same biotech company reported that they had successfully transplanted kidney-like organs into cows. The team of researchers created a cloned cow embryo by removing the DNA from an egg cell and then injecting the DNA from the skin cell of the donor cow's ear. Since little is known about manipulating embryonic stem cells from cows, the scientists let the cloned embryos develop into fetuses. The scientists then harvested fetal tissue from the clones and transplanted it into the donor cow. In the three months of observation following the transplant, no sign of immune rejection was observed in the transplant recipient.

Another potential application of cloning to organ transplants is the creation of genetically modified pigs from which organs suitable for human transplants could be harvested . The transplant of organs and tissues from animals to humans is called xenotransplantation.

Why pigs? Primates would be a closer match genetically to humans, but they are more difficult to clone and have a much lower rate of reproduction. Of the animal species that have been cloned successfully, pig tissues and organs are more similar to those of humans. To create a "knock-out" pig, scientists must inactivate the genes that cause the human immune system to reject an implanted pig organ. The genes are knocked out in individual cells, which are then used to create clones from which organs can be harvested. In 2002, a British biotechnology company reported that it was the first to produce "double knock-out" pigs that have been genetically engineered to lack both copies of a gene involved in transplant rejection. More research is needed to study the transplantation of organs from "knock-out" pigs to other animals.


What are the risks of cloning?

Reproductive cloning is expensive and highly inefficient. More than 90% of cloning attempts fail to produce viable offspring. More than 100 nuclear transfer procedures could be required to produce one viable clone. In addition to low success rates, cloned animals tend to have more compromised immune function and higher rates of infection, tumor growth, and other disorders. Japanese studies have shown that cloned mice live in poor health and die early. About a third of the cloned calves born alive have died young, and many of them were abnormally large. Many cloned animals have not lived long enough to generate good data about how clones age. Appearing healthy at a young age unfortunately is not a good indicator of long-term survival. Clones have been known to die mysteriously. For example, Australia's first cloned sheep appeared healthy and energetic on the day she died, and the results from her autopsy failed to determine a cause of death.

In 2002, researchers at the Whitehead Institute for Biomedical Research in Cambridge, Massachusetts, reported that the genomes of cloned mice are compromised. In analyzing more than 10,000 liver and placenta cells of cloned mice, they discovered that about 4% of genes function abnormally. The abnormalities do not arise from mutations in the genes but from changes in the normal activation or expression of certain genes.

Problems also may result from programming errors in the genetic material from a donor cell. When an embryo is created from the union of a sperm and an egg, the embryo receives copies of most genes from both parents. A process called "imprinting" chemically marks the DNA from the mother and father so that only one copy of a gene (either the maternal or paternal gene) is turned on. Defects in the genetic imprint of DNA from a single donor cell may lead to some of the developmental abnormalities of cloned embryos.


Should humans be cloned?

Physicians from the American Medical Association and scientists with the American Association for the Advancement of Science have issued formal public statements advising against human reproductive cloning. The U.S. Congress has considered the passage of legislation that could ban human cloning.

Due to the inefficiency of animal cloning (only about 1 or 2 viable offspring for every 100 experiments) and the lack of understanding about reproductive cloning, many scientists and physicians strongly believe that it would be unethical to attempt to clone humans. Not only do most attempts to clone mammals fail, about 30% of clones born alive are affected with "large-offspring syndrome" and other debilitating conditions. Several cloned animals have died prematurely from infections and other complications. The same problems would be expected in human cloning. In addition, scientists do not know how cloning could impact mental development. While factors such as intellect and mood may not be as important for a cow or a mouse, they are crucial for the development of healthy humans. With so many unknowns concerning reproductive cloning, the attempt to clone humans at this time is considered potentially dangerous and ethically irresponsible.

(Source: www.ornl.gov)