web Search

Google
 

Sunday, March 11, 2018

Chromosome In Situ Hybridization


A modern approach to the specific location of genes on chromosomes is a technique for the hybridization of DNA and RNA "in situ." With this procedure, specific radioactive RNA or DNA (known as probes) can be isolated (or synthesized "in vitro") and then annealed to chromosomes which have been treated in such a manner that their basic double stranded DNA has been "melted" or dissociated.
In theory, and fortunately in practice, when the DNA is allowed to re-anneal, the probe competes for the binding, but only where it mirrors a complimentary sequence. Thus, RNA will attach to the location on the chromosome where the code for its production is to be found. DNA will anneal to either RNA which is still attached to a chromosome, or to the complimentary sequence DNA strand within the chromosome. Since the probe is radioactive, it can be localized via autoradiographic techniques.
Finally, it is possible to produce an RNA probe that is synthesized directly from repetitive sequences of DNA, such as that found within the nucleolar organizer region of the genome. This RNA is known as cRNA (for copied RNA) and is a convenient source of a probe for localizing the nucleolar organizer gene within the nucleus, or on a specific chromosome.
The use of in situ hybridization begins with good cytological preparations of the cells to be studied, and the preparation of pure radioactive probes for the analysis. The details depend upon whether the hybridization is between DNA (probe) and DNA (chromosome), DNA (probe) and RNA (chromosome), or between RNA (probe) and DNA (chromosome).
Preparation of the Probe:
Produce radioactive RNA by incubating the cells to be measured in the presence of ^3H-uracil, a specific precursor to RNA. Subsequent to this incubation, extract rRNA from the sample and purify through differential centrifugation, column chromatography or electrophoresis. Dissolve the radioactive RNA probe in 4X Saline-Citrate containing 50% formamide to yield a sample that has 50,000 to 100,000 counts per minute, per 30 microliter sample, as determined with a scintillation counter. Add the formamide is added to prevent the aggregation of RNA.
Preparation of the Slides:
Fix the materials to be studied in either 95% ethanol or in 3:1 methanol:water, attach to pre-subbed slides (as squashes for chromosomes) and air dry.
Hybridization
Place the air dried slides into a moist chamber, usually a disposable petri dish containing filter paper and carefully place 30 microliters of RNA probe in 4X SSC-50% formamide onto the sample.
Carefully add a cover slip (as in the preparation of a wet mount), place the top on the container and place in an incubator at 37° C for 6-12 hours.
Washing:
Pick up the slides and dip into 2X SSC so that the coverglass falls off.
Place the slides in a coplin jar containing 2X SSC for 15 minutes at room temperature.
Transfer the slides to a treatment with RNase (50 microgram/ml RNase A, 100 units/ml RNase T1 in 2X SSC) at 37° C for 1 hour.
Wash twice in 2X SSC, 15 minutes each.
Wash twice in 70% ethanol, twice in 95% ethanol and air dry.
Autoradiography:
Add photographic emulsions to the slides and after a suitable exposure period, develop the slides, counterstain and add cover slips.
Analyze the slides by determining the location of the radioactive probe on the chromosomes or within the nuclei.
(Dr. William H. Heidcamp)

Degrade DNA to Get Deoxyribose for GC/MS Analysis


1. Dissolve 100ug DNA in 200ul distilled water.
2. Add MgCL2 and sodium acetate to the final concentration of 15mM and 10mM, respectively.
3. Incubate with 2 units DNAse I at room temperature for 15 minutes.
4. Add ammonium bicarbonate to the final concentration of 100mM, and then incubate with 2mU            phosphodiesterase at 37oC in water bath for 2 hours.
5. Add 1 unit of alkaline phosphatase and incubated at 37oC water bath for another 1 hour.
6. Air dry the solution with degraded DNA. Derivalize produced deoxyribose to its aldonitrile
acetate form as usual for analysis on GC/MS spectrometer.

About Single nucleotide polymorphisms (SNPs)


Single nucleotide polymorphisms (SNPs)

Single nucleotide polymorphisms or SNPs (pronounced "snips") are DNA sequence variations that occur when a single nucleotide (A,T,C,or G) in the genome sequence is altered. For example a SNP might change the DNA sequence AAGGCTAA to ATGGCTAA. For a variation to be considered a SNP, it must occur in at least 1% of the population. SNPs, which make up about 90% of all human genetic variation, occur every 100 to 300 bases along the 3-billion-base human genome. Two of every three SNPs involve the replacement of cytosine (C) with thymine (T). SNPs can occur in both coding (gene) and noncoding regions of the genome. Many SNPs have no effect on cell function, but scientists believe others could predispose people to disease or influence their response to a drug.

Although more than 99% of human DNA sequences are the same across the population, variations in DNA sequence can have a major impact on how humans respond to disease; environmental insults such as bacteria, viruses, toxins, and chemicals; and drugs and other therapies. This makes SNPs of great value for biomedical research and for developing pharmaceutical products or medical diagnostics. SNPs are also evolutionarily stable --not changing much from generation to generation --making them easier to follow in population studies.

Scientists believe SNP maps will help them identify the multiple genes associated with such complex diseases as cancer, diabetes, vascular disease, and some forms of mental illness. These associations are difficult to establish with conventional gene-hunting methods because a single altered gene may make only a small contribution to the disease.

Several groups worked to find SNPs and ultimately create SNP maps of the human genome. Among these groups were the U.S. Human Genome Project (HGP) and a large group of pharmaceutical companies called the SNP Consortium or TSC project. The likelihood of duplication among the groups was small because of the estimated 3 million SNPs, and the potential payoff was high.
In addition to the pharmacogenomic, diagnostic, and biomedical research implications, SNP maps are helping to identify thousands of additional markers along the genome, thus simplifying navigation of the much larger genome map generated by researchers in the HGP.

A basic introduction to SNPs from the National Center for Biotechnology Information (NCBI).

Understanding SNPs and Cancer - An online tutorial from the National Cancer Institute.

 An animated tutorial describing how DNA markers are used in medical applications.

Questions and answers about genome variation from the Genome News Network.
HGP.

This is simply the lesser of the two allele frequencies for single nucleotide polymorphisms[1]. It is important to note that there are variations between ...
en.wikipedia.org/wiki/Single_nucleotide_polymorphism

Identifying the genetic variation underlying complex disease requires analysis of many single nucleotide polymorphisms (SNPs) in a large number of samples. ...
www.natureprotocols.com/2007/01/11/single_nucleotide_polymorphism.php

Furthermore, we provide a detailed, day-by-day based protocol for SAGE. ... A general approach to single-nucleotide polymorphism discovery. (1999) Nat. ...
www.springerprotocols.com/Abstract/doi/10.1007/978-1-59745-463-6_5

TaqMan SNP Genotyping Assays Protocol (PN 4332856C)
SNP Genotyping Assays Protocol. work should be conducted in properly equipped .... SNP Genotyping Assays Protocol. 3. Store multiple aliquots of the SNP ...
docs.appliedbiosystems.com/pebiodocs/04332856.pdf

Assays-by-Design Service For SNP Assays Protocol
PDF of Assays-by-Design Service For SNP Assays Protocol.
C PDF of Assays-by-Design Service Submission Guidelines. Protocol. C PDF of product insert ...
www.rockefeller.edu/genomics/pdf/Applied_Biosystems_SNP_Assay-by-design.pdf

Single Nucleotide Polymorphisms (SNPs) are the most common type of sequence variation and account for about 90% of sequence differences in humans. ...
www.seqwright.com/resequencing.htm

C. elegans Single Nucleotide Polymorphism Data ... Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. ...
genome.wustl.edu/genome/celegans/celegans_snp.cgi

Sequence variation in human genes is largely confined to single-nucleotide polymorphisms (SNPs) and is valuable in tests of association with common diseases ...
www.nature.com/ng/journal/v22/n3/full/ng0799_239.html

Most* RFLPs are created by a change in a single nucleotide in the gene, and so these are called single nucleotide polymorphisms (SNPs). ...
users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/Polymorphisms.html

Developments of geriatric autopsy database and Internet-based database of Japanese single nucleotide polymorphisms for geriatric research (JG-SNP). ...
www.tmgh.metro.tokyo.jp/jg-snp/english/E_top.html

High-resolution single-nucleotide polymorphism array and clustering
Single-nucleotide polymorphisms (SNPs) are the most. common form of sequence variation in the human. genome, occurring approximately every 1200 base pairs ...
www.broad.mit.edu/mpr/publications/projects/SNP_Analysis/Janne.pdf


In situ hybridization protocol


A modern approach to the specific location of genes on chromosomes is a technique for the hybridization of DNA and RNA "in situ." With this procedure, specific radioactive RNA or DNA (known as probes) can be isolated (or synthesized "in vitro") and then annealed to chromosomes which have been treated in such a manner that their basic double stranded DNA has been "melted" or dissociated.

In theory, and fortunately in practice, when the DNA is allowed to re-anneal, the probe competes for the binding, but only where it mirrors a complimentary sequence. Thus, RNA will attach to the location on the chromosome where the code for its production is to be found. DNA will anneal to either RNA which is still attached to a chromosome, or to the complimentary sequence DNA strand within the chromosome. Since the probe is radioactive, it can be localized via autoradiographic techniques.

Finally, it is possible to produce an RNA probe that is synthesized directly from repetitive sequences of DNA, such as that found within the nucleolar organizer region of the genome. This RNA is known as cRNA (for copied RNA) and is a convenient source of a probe for localizing the nucleolar organizer gene within the nucleus, or on a specific chromosome.

The use of in situ hybridization begins with good cytological preparations of the cells to be studied, and the preparation of pure radioactive probes for the analysis. The details depend upon whether the hybridization is between DNA (probe) and DNA (chromosome), DNA (probe) and RNA (chromosome), or between RNA (probe) and DNA (chromosome).

Preparation of the Probe:

Produce radioactive RNA by incubating the cells to be measured in the presence of ^3H-uracil, a specific precursor to RNA. Subsequent to this incubation, extract rRNA from the sample and purify through differential centrifugation, column chromatography or electrophoresis. Dissolve the radioactive RNA probe in 4X Saline-Citrate containing 50% formamide to yield a sample that has 50,000 to 100,000 counts per minute, per 30 microliter sample, as determined with a scintillation counter. Add the formamide is added to prevent the aggregation of RNA.

Preparation of the Slides:

Fix the materials to be studied in either 95% ethanol or in 3:1 methanol:water, attach to pre-subbed slides (as squashes for chromosomes) and air dry.

Hybridization

Place the air dried slides into a moist chamber, usually a disposable petri dish containing filter paper and carefully place 30 microliters of RNA probe in 4X SSC-50% formamide onto the sample.

Carefully add a cover slip (as in the preparation of a wet mount), place the top on the container and place in an incubator at 37° C for 6-12 hours.

Washing:

  • Pick up the slides and dip into 2X SSC so that the coverglass falls off.
  • Place the slides in a coplin jar containing 2X SSC for 15 minutes at room temperature.
  • Transfer the slides to a treatment with RNase (50 microgram/ml RNase A, 100 units/ml RNase T1 in 2X SSC) at 37° C for 1 hour.
  • Wash twice in 2X SSC, 15 minutes each.
  • Wash twice in 70% ethanol, twice in 95% ethanol and air dry.

Autoradiography:

Add photographic emulsions to the slides and after a suitable exposure period, develop the slides, counterstain and add cover slips.

Analyze the slides by determining the location of the radioactive probe on the chromosomes or within the nuclei.

Explanation of Biology Phrases


1: Okazaki Fragments.                                                              
2: Priming.                                                           
3: Origin of Replication in E. coli.                                                        
5: Topoisomerase II Mechanism.                                                         
6: Structure of Topoisomerase II.                                                         
7: Topoisomerase I Mechanism.                                                          
8: Structure of a Topoisomerase.                                                         
9: Topoisomers.                                                             
10: Linking Number.                                                             
11: DNA Polymerases Require a Template and a Primer                                
12: Conserved Residues among Helicases.                                                
13: Helicase Mechanism.                                                             
14: Helicase Structure.                                                             
15: Proofreading.                                                           
16: Shape Selectivity.                                                             
17: Minor-Groove Interactions.                                                         
18: DNA Polymerase Mechanism.                                                        
19: DNA Polymerase Structure.                                                         
20: DNA Can Assume a Variety of Structural Forms                                    
21: Comparison of A-, B-, and Z-DNA                                                   
22: Z-DNA.                                                          
23: Propeller Twist.                                                             
24: Major and Minor Grooves in B-Form DNA.                                          
25: Major- and Minor-Groove Sides.                                                     
26: Steric Clash.                                                          
27: Sugar Puckers.                                                            
28: B-Form and A-Form DNA.                                                         
30: DNA Replication At Low Resolution.                                                
31: Consequences of Strand Separation.                                                  
32: DNA Replication.                                                            
33: DNA Replication, Recombination, and Repair                                       
34: Problems                                                         
35: Summary                                                        
36: Mutations Involve Changes in the Base Sequence of DNA                        
37: Ames Test.                                                         
38: Triplet Repeat Expansion.                                                           
39: Mismatch Repair.                                                             
40: Uracil Repair.                                                            
41: Excision Repair.                                                             
42: Structure of DNA-Repair Enzyme.                                                   
43: Repair Pathways.                                                             
44: Cross-Linked Dimer of Two Thymine Bases.                                         
45: Aflatoxin Reaction.                                                            
46: Acridines.                                                       
47: Chemical Mutagenesis.                                                            
48: Base Pair with 5-Bromouracil.                                                        
49: Base Pair with Mutagenic Tautomer.                                                  


51: Recombinases and Topoisomerase I.                                                  
52: Recombination Mechanism.                                                         
53: Holliday Junction.                                                             
54: Recombination.                                                            
56: Telomere Formation.                                                             
57: Proposed Model for Telomeres.                                                      
58:Eukaryotic Cell Cycle.                                                             
59: Coordination between the Leading and the Lagging Strands.                    
60: Replication Fork.                                                             
61: Structure of the Sliding Clamp.                                                      
62: Proposed Architecture of DNA Polymerase III Holoenzyme.                    
63: DNA Ligase Mechanism.                                                           
64: DNA Ligase Reaction.                                                            
65: Diversity Is Generated by Gene Rearrangements                                    
66: Class Switching.                                                             
67: B-Cell Activation.                                                             
68: B-Cell Receptor.                                                             
69: V( D ) J Recombination.                                                           
70: Light-Chain Expression.                                                           
71: VJ Recombination.                                                             
72: The Kappa Light-Chain Locus.                                                       
74: Antibody - Protein Interactions.                                                      
75: Antibodies Against Lysozyme.                                                       
76: Binding of a Small Antigen.                                                         
77: Variable Domains.                                                             
79: Immunoglobulin Fold.                                                            
81: Variable and Constant Regions.                                                      
82: Immunoglobulin Sequence Diversity.                                                 
83: Properties of immunoglobulin classes                                                  
84: Classes of Immuno-Globulin.                                                        
85: Segmental Flexibility.                                                             
86: Antigen Cross-Linking.                                                            
87: Immunoglobulin G Cleavage.                                                        
88: Immunoglobulin G Structure.                                                        
90: Immunoglobulin Production.                                                        
91: The Immune System                                                                       
92: Problems                                                                                         
93: Summary                                                                                         
94: Immune Responses Against Self-Antigens Are Suppressed               
95: Consequences of Autoimmunity.                                                   
96: T-Cell Selection.                                                                             
97: Major-Histocompatibility-Complex Proteins Present Peptide Antigens on Cell Surfaces for Recognition by T-Cell Receptors                                                                                               
98: HIV Receptor.                                                                                
99: Human Immunodeficiency Virus.                                                  
100: Polymorphism in Class I MHC Protein.           


101: Helper T Cell Action.                                                                    
102: Variations on a Theme.                                                                  
103: Coreceptor CD4.                                                                           
104: Class II MHC Protein.                                                                  
105: Presentation of Peptides from Internalized Proteins.                      
106: Consequences of Cytotoxic-T-Cell Action.                                  
107: T-Cell Activation.                                                                          
108: T-Cell Receptor Complex.                                                             
109: The Coreceptor CD8.                                                                    
110: T-Cell Receptor Class I MHC Complex.                                      
111: T-Cell Receptor.                                                                            
112: Anchor Residues.                                                                          
113: Class I MHC Peptide-Binding Site.                                              
114: Class I MHC Protein.                                                                    
115: Presentation of Peptides from Cytosolic Proteins.                         
              
119: Transcription Initiation.                                                                 
120: CAAT Box and GC Box.                                                             
121: TATA Box.                                                                                   
122: RNA Polymerase Poison.                                                              
123: Eukaryotic RNA polymerases                                                       
124: Transcription and Translation.                                                       
125: Transcription Is Catalyzed by RNA Polymerase                           
126: Antibiotic Action.                                                                         
127: Primary Transcript.                                                                        
129: Effect of Rho Protein On the Size of RNA Transcripts.                  
130: Termination Signal.                                                                       
131: RNA-DNA Hybrid Separation.                                                    
132: Transcription Bubble.                                                                    
133: DNA Unwinding.                                                                         
134: Alternative Promoter Sequences.                                                  
135: Structure of the Sigma Subunit.                                                    
136: Prokaryotic Promoter Sequences.                                                  
137: Footprinting.                                                                                  
138: RNA Polymerase Active Site.                                                       
139: Subunits of RNA polymerase from E. coli                                   
141: RNA Polymerase Structures.                                                        
142: An Overview of RNA Synthesis                                                  
143: RNA Synthesis and Splicing                                                         
144: Problems                                                                                        
145: Summary                                                                                       
146: Comparison of Splicing Pathways.                                               
147: Self-Splicing Mechanism.                                                              
148: Structure of a Self-Splicing Intron.                                               


151: Selected proteins exhibiting alternative RNA splicing                    
152: Alternative Splicing Patterns.                                                        
153: Splicing Catalytic Center.                                                             
154: Spliceosome Assembly.                                                                 
156: Splicing Branch Point.                                                                   
157: Splicing Mechanism Used for mRNA Precursors.                         
158: Splicing Defects.                                                                           
159: Splice Sites.                                                                                   
160: RNA Editing.                                                                                
161: Polyadenylation of a Primary Transcript.                                      
162: Capping the 5 End.                                                                       
163: Transfer RNA Precursor Processing.                                             
165: Transcription-Factor-Binding Sites.                                              
166: Assembly of the Initiation Complex.                                            
168: An Experimental Demonstration of Enhancer Function.                  
169: Enhancer Binding Sites.                                                                
170: Gal4 Binding Sites.                                                                       
171: Higher-Order Chromatin Structure.                                              
172: Homologous Histones.                                                                  
173: Nucleosome Core Particle.                                                            
174: Chromatin Structure.                                                                     
175: Yeast Chromosomes.                                                                     
177: DNA Recognition Through Beta Strands.                                    
178: Helix-Turn-Helix Motif.                                                                
179: Structure of a Dimer of CAP Bound to DNA.                             
180: Binding Site for Catabolite Activator Protein (CAP).                     
181: Binding-Site Distributions.                                                           
182: Induction of the LAC Operon.                                                      
183: Effects of IPTG On LAC Repressor Structure.                            
184: LAC Repressor-DNA Interactions.                                               
185: Structure of the LAC Repressor.                                                   
186: The LAC Operator.                                                                        
187: Operons.                                                                                        
188: Beta-Galactosidase Induction.                                                      
189: Following the Beta-Galactosidase Reaction.                                
190: Programming Gene Expression.                                                    
192: The Control of Gene Expression                                                   
193: Chapter Integration Problem                                                         
194: Problems                                                                                        
195: Summary                                                                                       
197: The IRE-BP Is an Aconitase.                                                        
198: Transferrin-receptor mRNA.                                                         
199: Iron-Response Element.                                                                
200: Structure of Ferritin.            


201: Leader Peptide Sequences.                                                           
202: Attenuation.                                                                                  
203: Leader Region of TRP mRNA.                                                    
205: Interaction between CBP and CREB.                                          
206: Domain Structure of CREB-Binding Protein (CBP).                     
207: Cyclic AMP-Response Element Binding Protein (CREB).               
208: Chromatin Remodeling.                                                                
209: Structure of a Bromodomain.                                                        
210: Structure of Histone Acetyltransferase.                                        
211: Estrogen Receptor-Tamoxifen Complex.                                      
212: Coactivator Recruitment.                                                              
213: Coactivator-Nuclear Hormone Receptor Interactions.                     
214: Coactivator Structure.                                                                   
215: Ligand Binding to Nuclear Hormone Receptor.                           
216: Structure of Two Nuclear Hormone Receptor Domains.                  
218: The Rod Cell.                                                                                
219: The Electromagnetic Spectrum.                                                    
224: Evidence that T2R Proteins Are Bitter Taste Receptors.                  
225: Conserved and Variant Regions in Bitter Receptors.                      
226: Expression of Gustducin in the Tongue.                                       
227: A Taste Bud.                                                                                 
228: Examples of Tastant Molecules.                                                    
230: Brain Response to Odorants.                                                        
231: The Cyranose 320.                                                                         
232: Converging Olfactory Neurons.                                                    
233: Patterns of Olfactory Receptor Activation.                                  
235: The Olfactory Signal-Transduction Cascade.                               
236: Conserved and Variant Regions in Odorant Receptors.                  
237: Evolution of Odorant Receptors.                                                  
238: The Main Nasal Epithelium.                                                          
239: Color Perception.                                                                           
240: Sensory Connections to the Brain.                                                
241: Sensory Systems                                                                            
242: Problems                                                                                        
243: Summary                                                                                       
245: Magnetotactic Bacterium.                                                             









251: Electron Micrograph of Tip Links.                                                
252: Micromanipulation of a Hair Cell.                                                 
253: An Electron Micrograph of a Hair Bundle.                                   
254: Hair Cells, the Sensory Neurons Crucial for Hearing.                     
255: Photoreceptor Molecules in the Eye Detect Visible Light                
256: Recombination Pathways Leading to Color Blindness.                   
257: Evolutionary Relationships among Visual Pigments.                      
259: Cone-Pigment Absorption Spectra.                                               
260: Visual Signal Transduction.                                                          
261: Analogous 7TM Receptors.                                                           
262: Atomic Motion in Retinal.                                                            
263: Retinal-Lysine Linkage.                                                                
264: Rhodopsin Absorption Spectrum.                                                 
265: Protein Synthesis                                                                           
266: Ribosomal Protein Structure.                                                        
267: Ribosomal RNA Folding Pattern.                                                 
268: The Ribosome at High Resolution.                                               
269: Ribosomes at Low Resolution.                                                     
271: Classes of Aminoacyl-tRNA Synthetases.                                    
273: Microhelix Recognized by Alanyl-tRNA Synthetase.                     
274: Glutaminyl-tRNA Synthetase Complex.                                      
275: Threonyl-tRNA Synthetase Complex.                                          
276: Editing of Aminoacyl-tRNA.                                                       
277: Editing Site.                                                                                  
278: Structure of Threonyl-tRNA Synthetase.                                     
279: Aminoacyl-tRNA.                                                                         
281: Helix Stacking in tRNA.                                                               
282: L-Shaped tRNA Structure.                                                           
283: General Structure of tRNA Molecules.                                         
284: Alanine-tRNA Sequence.                                                              
285: Accuracy of protein synthesis                                                       
286: Polypeptide-Chain Growth.                                                          
287: Protein Assembly.                                                                         
288: Ribosome Structure.                                                                      
289: Problems                                                                                        
290: Summary                                                                                       
292: Blocking of Translocation by Diphtheria Toxin.                           
293: Antibiotic Action of Puromycin.                                                   
294: Antibiotic inhibitors of protein synthesis                                      
295: Eukaryotic Translation Initiation.                                                  
296: Protein Factors Play Key Roles in Protein Synthesis                      
297: Structure of Ribosome Release Factor (RRF).                              
298: Structure of a Release Factor.                                                       
300: Molecular Mimicry   
                                                       

301: Structure of Elongation Factor Tu.                                               
302: Translation Initiation in Prokaryotes.                                            
305: A Role for Formylation.                                                                
306: Peptide-Bond Formation.                                                              
307: Mechanism of Protein Synthesis.                                                  
308: Polypeptide Escape Path.                                                              
309: Transfer RNA-Binding Sites.                                                        
310: Formylation of Methionyl-tRNA.                                                 
311: Initiation Sites.                                                                              
312: Polysomes.                                                                                     

313: Thick Filament.                                                                              
314: Myosin Motion Along Actin.                                                        
315: Watching a Single Motor Protein in Action.                                 
316: Actin and Hexokinase.                                                                  
317: Actin Structure.                                                                             
318: Sliding-Filament Model.                                                               
319: Sarcomere.                                                                                     
321: Effect of nucleotide binding on protein affinity                           
322: Neck Linker.                                                                                  
323: Relay Helix.                                                                                   
324: Lever-Arm Motion.                                                                       
325: Dynein Head-Domain Model.                                                       
326: Structure of Head Domain of Kinesin at High Resolution.               
327: Kinesin at Low Resolution.                                                           
328: Myosin Two-Stranded Coiled Coil.                                              
329: Myosin Light Chains.                                                                    
330: Myosin Structure at High Resolution.                                           
331: Myosin Dissection.                                                                        
332: Myosin Structure at Low Resolution.                                           
334: Motion Within Cells.                                                                     
335: Molecular Motors                                                                          
336: Problems                                                                                        
337: Summary                                                                                       
338: A Rotary Motor Drives Bacterial Motion                                     
339: Chemotaxis Signaling Pathway.                                                    
340: Changing Direction.                                                                      
341: Charting a Course.                                                                         
342: Proton Transport-Coupled Rotation of the Flagellum.                    
343: Flagellar Motor Components.                                                        
344: Flagellar Motor.                                                                             
345: Structure of Flagellin.                                                                    
346: Bacterial Flagella.                                                                          
347: Kinesin and Dynein Move Along Microtubules                            
348: Motion in Ncd.                                                                              
349: Structure of Ncd.                                                                          


351: Monitoring Movements Mediated by Kinesin.                             
352: Tubulin.                                                                                         
353: Microtubule Arrangement.                                                            
354: Microtubule Structure.                                                                  
355: Myosins Move Along Actin Filaments                                         
356: Myosin Lever Arm Length.                                            
357: The Biosynthesis of Membrane Lipids and Steroids                       
358: Site of Cholesterol Synthesis.                                                       
359: Properties of plasma lipoproteins                                                  
360: HMG-CoA Reductase.                                                                 
362: Cholesterol Formation.                                                                  
363: Oxidosqualene Cyclase.                                                                
364: Squalene Cyclization.                                                                    
365: Squalene Synthesis.                                                                       
366: Condensation Mechanism in Cholesterol Synthesis.                       
367: Synthesis of Isopentenyl Pyrophosphate.                                     
368: Fates of 3-Hydroxy-3-Methylglutaryl CoA.                                 
369: Labeling of Cholesterol.                                                                
371: Lysosome with Lipids.                                                                  
372: Ganglioside G M1.                                                                        
373: Synthesis of Sphingolipids.                                                           
374: Synthesis of an Ether Phospholipid.                                             
375: Structure of CDP-Diacylglycerol.                                                 
377: Problems                                                                                        
378: Summary                                                                                       
380: Three Isoprenoids from Familiar Sources.                                     
381: Vitamin D Synthesis.                                                                    
384: Cytochrome P450 Mechanism.                                                     
385: Cholesterol Carbon Numbering.                                                    
387: Synthesis of Bile Salts.                                                                  
390: An Atherosclerotic Plaque.                                                           
391: Structure of Propeller Domain.                                                     
392: Structure of Cysteine-Rich Domain.                                             
393: LDL Receptor Domains.                                             
394: Endocytosis of LDL Bound to Its Receptor.                               
395: Schematic Model of Low-Density Lipoprotein.                           
396: Biochemistry and Human Biology                                                
397: Prelude: Biochemistry and the Genomic Revolution                      
398: Chemical Bonds in Biochemistry                                                  
399: Biochemical Unity Underlies Biological Diversity                         



401: Fischer Projections                                                                        
402: Appendix: Depicting Molecular Structures                                   
404: The Integration of Metabolism                                                      
405: Fuel sources for muscle contraction                                              
406: Interplay of metabolic pathways for energy production.                  
407: Electron Micrograph of Mitochondria.                                         
408: Covalent Modifications.                                                                
409: Compartmentation of the Major Pathways of Metabolism.               
410: Regulation of Glycolysis.                                                              
411: Regulation of the Pentose Phosphate Pathway.                            
412: Regulation of Gluconeogenesis.                                                    
413: Glycogen Granules.                                                                       
414: Regulation of Fatty Acid Synthesis.                                             
415: Control of Fatty Acid Degradation.                                             
416: Metabolic Fates of Glucose 6-Phosphate.                                     
418: Metabolism Consist of Highly Interconnected Pathways                 
419: Fuel reserves in a typical 70-kg man                                             
420: Metabolic Interchanges between Muscle and Liver.                       
422: Electron Micrograph of Liver Cells.                                              
423: Insulin Secretion.                                                                           
424: Each Organ Has a Unique Metabolic Profile                                
425: Fuel Choice During Starvation.                                                     
426: Synthesis of Ketone Bodies by the Liver.                                    
427: Fuel metabolism in starvation                                                        
428: Entry of Ketone Bodies Into the Citric Acid Cycle.                      
429: Food Intake and Starvation Induce Metabolic Changes                  
432: Ethanol Alters Energy Metabolism in the Liver                            
433: Summary                                                                                       
434: Problems                                                                                        
435: NAD, FAD, and Coenzyme A Are Formed from ATP                   
436: de Novo Pathway for Pyrimidine Nucleotide Synthesis.                 
437: Structure of Carbamoyl Phosphate Synthetase.                            
438: Ammonia-Generation Site.                                                            
439: Substrate Channeling.                                                                   
441: de Novo Pathway for Purine Nucleotide Synthesis.                       
442: de Novo Purine Biosynthesis.                                                       
443: Inosinate Formation.                                              
444: Generating AMP and GMP.                                                         
446: Ribonucleotide Reductase R1 Subunit.                                        
447: Ribonucleotide Reductase R2 Subunit.                                        
448: Ribonucleotide Reductase Mechanism.                                        
449: Thymidylate Synthesis.                                                                 
450: Anticancer Drug Targets.       


451: Suicide Inhibition.                                                                         
453: Control of Purine Biosynthesis.                                                    
455: Purine Catabolism.                                                                        
456: Urate Crystals.                                                                               
458: Summary                                                                                       
459: Problems                                                                                        
460: Nucleotide Biosynthesis                                                                

Frontmatter, appendices, and other book material:
461: Biochemistry                                                                                 
462: Appendix C: Standard Bond Lengths                                          
463: Standard Bond Lengths                                                                
464: Appendix B: Acidity Constants                                                    
465: Typical pKa values of ionizable groups in proteins                         
466: pKa Values of Some Acids                                                           
467: Appendix A: Physical Constants and Conversion of Units               
468: Standard prefixes                                                                          
469: Conversion factors                                                                        
470: Mathematical constants                                                                 
471: Values of physical constants                                                         
472: Responding to Environmental Changes                                        
473: Synthesizing the Molecules of Life                                               
474: The Unity of Biochemistry Allows Human Biology to Be Effectively Probed Through Studies of Other Organisms                                                                                                     
475: Biochemical Evolution                                                                  
476: Cells Can Respond to Changes in Their Environments                    
478: Exploring Proteins                                                                         
479: Summary                                                                                       
481: Zonal Centrifugation.                                                                    
482: Protein Structure and Function                                                     
483: Summary                                                                                       
485: Proteins Are Built from a Repertoire of 20 Amino Acids                 
486: Oxidative Phosphorylation                                                            
487: ATP yield from the complete oxidation of glucose                        
489: Exploring Evolution                                                                      
491: The Calvin Cycle and the Pentose Phosphate Pathway                   
492: Calvin Cycle.                                                                                 
493: Isozymes of Lactate Dehydrogenase.                                           
494: Ultracentrifugation Studies of ATCase.                                       
495: Metabolism: Basic Concepts and Design